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Abstract

The effect of electron–electron (e–e) interaction on trans-polyacetylene (t-PA) properties is investigated within the framework of an

extended Hubbard model in one dimension. For numerical calculation, we use the determinantal version of quantum Monte Carlo approach,

which provides a breakthrough to simulate statistical fluctuations in the systems with many degrees of freedom, in order to obtain mean

values for observables of physical interest. This allows one to analyze the discrete system of fermions without encountering the numerical

instabilities that generally occur from the original problem involving anticommuting fermion operators. We calculate the electronic

momentum distribution function nðkÞ for on-site interaction U and nearest-neighbor interaction E, where U , 4t; U . 4t and U . 4t; with

E [ ½U=2;U�; (t is the hopping matrix elements). q 2002 Published by Elsevier Science Ltd.
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1. Introduction

The understanding of the electrons correlations is one of

the most challenging problem in condensed matter at

present. Electrons correlations in conjugated polymers

have been paid a great deal of attention for the past few

years following the experimental and theoretical achieve-

ments. In quasi-one-dimensional organic systems and,

particularly, the advent of high temperature superconduc-

tivity has motivated renewed interest in the Hubbard model

[1,2].

In theoretical field for the recent past years, there has

been enormous research in both quantum chemistry and

solid state physics, such as semi-empirical methods of

quantum chemistry including the Pariser–Parr–Pople (PPP)

model, the extended Huckel model, the complete neglect of

differential overlap model, which have described quite

precisely a wide range of excited state properties (linear and

two-photon absorption, non-linear optical states, excited

state geometries and soliton structures) in p-conjugated

systems [3].

In solid state physics, the Hubbard model was introduced

as a simple effective model for the study of correlation

effects of d-electrons in transition metals [4]. It is believed

to provide a qualitative description of the magnetic proper-

ties of these materials and of the Mott metal insulator

transition. Despite of its appealing conceptual simplicity

rigorous results for the Hubbard model are rare. The most

explicit results have been obtained for the one-dimensional

case. This is the only case where the spectrum and a

complete set of eigen functions are known [5]. We should

also point out that despite the existence of the Lieb-Wu [6]

exact solution to the one-dimensional Hubbard model,

correlation functions are known in relatively few cases. In

particular, the momentum distribution, to our knowledge,

has been derived from the Lieb-Wu result only at half filling

and in the limit of strong on-site repulsion [7].

Our aim in this work is to determine the qualitative effect

of e–e interaction on the ground state properties by

determining the electronic momentum distribution obser-

vable for half filling band case. We use the better-tested

determinantal quantum Monte Carlo (QMC) method based
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on the Blakenbecler, Scalapino, Sugar and Hirsch (BSSH)

algorithm [8,9]. In one dimension, this algorithm is not

efficient as World-line methods [10], but it is more easily

generalizable to higher dimension. Also, the BSSH

algorithm is designed for the grand-canonical ensemble,

whose convergence to the infinite-size limit is presumably

different, and perhaps even faster, than the canonical

ensemble.

In Section 2, we discuss the scheme of our analysis: we

discuss the extended Hubbard model and the simulation

method and we implement the model to t-PA system. In

Section 3, we give the details of our results. The present

work is summarized in Section 4.

2. Model formulation and numerical work

2.1. MODEL: the extended one-dimensional Hubbard

model

In this paper we shall concentrate on the extended

version of one-dimensional Hubbard model. While the

analytic approaches usually define the model by specifying

the couplings in momentum space, for numerical

approaches it is more convenient to define the model in

real space. In addition, the interaction parameters in real

space have a more direct interpretation in terms of overlap

matrix elements of molecular orbitals in a tight-binding

picture. The simplest model defined in real space, is the

extended Hubbard model with on-site interaction U and

nearest-neighbor interaction E, given by the following

Hamiltonian [1,8,11].

H ¼ 2t
XN

i¼1;s¼f

ðcþi;sciþ1;s þ HcÞ þ U
XN
i¼1

ni"ni#

þ E
XN
i¼1

niniþ1 ð1Þ

where the index i label the spatial sites and s is a spin index

ðs ¼ fÞ; cþi;sðci;sÞ are creation (annihilation) operators, the

number operator is nis ¼ cþi;sci;s and ni ¼ ni" þ ni#; t is the

hopping parameter matrix, which is introduced from

the Hückel theory representing the degree to which the p-

orbitals on adjacent atoms in a chain overlap. The chemical

potential m is added to fix the average number knl ¼
kni" þ ni#l; we restrict ourselves to the half-filled band, m ¼

U=2:

2.2. Method: determinantal QMC simulation

Most of the literature on the one-dimensional Hubbard

model is based on the seminal 1968 paper [12] by Lieb and

Wu. In this paper, the model was solved by the

determinantal QMC simulation.

The partition function, using Trotter approximation [13]

in separating the one-particle and two-particle terms and

dividing the imaginary time interval ½0;b� into L sub-

intervals of width Dt ¼ b=L; may be written as:

Z ¼ Trðe2bĤÞ ¼ Tr
YL

l¼1

e2DtĤ < Tr
YL

l¼1

e2DtĤ0 e2DtĤ1 ð2Þ

To eliminate the two-body interaction term, we use the

discrete Hubbard–Stratonovich transformation [14] using

the identity:

Tr expð2cþi AijcjÞexpð2cþi BijcjÞ ¼ detð1 þ e2Ae2BÞ ð3Þ

for arbitrary matrices A and B and taking the trace over

fermions [15], one obtains:

Z ¼ Trs
Y

a¼^1

YL

l¼1

½1 þ BLðaÞBL21ðLÞ· · ·B1ðaÞ� ð4Þ

¼ Trs det O" det O# ð5Þ

where Os is an NL £ NL matrix,

Os ¼ 1 þ
YL

l¼1

Bs
l ðaÞ ð6Þ

BlðaÞ ¼ exp½2DtK�exp½VaðlÞ� ð7Þ

Ki; j ¼
2tð. 0Þ for i; j nearest neighbor;

0 otherwise

(

Va
ij ðlÞ ¼ dij lasiðlÞ þ Dt m2

U

2

� �� �
ð8Þ

l ¼ cosh21 Dt
U

2

� �
ð9Þ

To perform the Monte Carlo simulation, we can take the

determinant in Eq. (5) as the Boltzmann weight. For the case

of half-filled band, the product in Eq. (3) is positive for

arbitrary s configurations [16].

The heat-bath algorithm is used to perform the sum over

Ising spins. Suppose, Ra is the ratio of new to old

determinant for fermion spin a on flipping a given Ising

spin, the flipping probability for this, is given by:

P ¼
R"R#

1 þ R"R#

ð10Þ

Ra can be computed by using the procedure introduced by

Blakenbecler, Scalapino and Sugar [10], which involves

updating the Green’s function exactly when a move is

accepted. Therefore, measurements of statistical averages of

many observables are performed.

Let us recall, at the end of this section, that in the

quantum chemistry field, the resolution of the sign problem

in QMC simulation has been reported in many papers. The

most popular work is the paper of Soos et al. [17], where,

they resolve the problem for the PPP model.
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3. Numerical results and discussion

The numerical study using the Monte Carlo method

allows us to get quantitative and qualitative results for

various statistical properties for essentially arbitrary par-

ameters ðU;EÞ: Since the problem of convergence is

delicate and depends on the physical quantity calculated

as well as on the magnitude of these parameters, we are

interested in an appropriate t-PA’s set of parameters [18].

t-PA is a quasi-one-dimensional compound with a carbon

backbone characterized by several types of bonds. The

ground state geometry of t-PA is shown schematically in

Fig. 1(a). The valence electronic structure is determined by

the carbon 2s and 2p orbitals which, in the limit of an infinite

polyene, form s-type and p-type energy bands with the

p-bands closest to the gap between the highest occupied

molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO).

Assuming equal C–C bond lengths and a quasi-one-

dimensional structure [19] this mean that the unit of

repetition contains one carbon atom which contributes one

electron in a 2pz-orbital to the p-electron system. Since

there is room for two electrons in each 2pz-orbital this

implies that the p-band is exactly half-filled. Fig. 1(b)

shows the first assumption in which we take one carbon

atom per unit cell. Also is shown in this figure the no-null

elements of the hopping matrix having all the same absolute

value t.

Before proceeding to the details of our results we must

recall here that all the physical observables are calculated

for a chain consisting of 32 sites. All that the measurements

are taken only every other full Monte Carlo sweeps through

the (1 þ 1)-dimensional lattice. We have performed our

calculations for the following auxiliary data: 400 warm-ups

sweep and the number of time slices (L ) is taken equal to 30.

We must notice that this set of values is selected with a

purely ‘computational criterion’ [9,10].

3.1. Momentum distribution

In our work, we are interested in the variation of mean

values of the electronic momentum distribution nðkÞ for all

k ¼ kx; kx ¼ 2pix=Nx; 0 W ix W Nx 2 1: It can be calculated

in the ground state as follows:

nðkÞ ¼
1

2

X
s

kcþkscksl ð11Þ

Because the QMC calculation uses the site representation,

we should perform a Fourier transformation of Eq. (11) to

real space, and obtain

nðkÞ ¼
1

2N

X
n

X
l

X
s

kcþnþ1;scn;slexpðik·lÞ ð12Þ

N is the site number or equivalently elementary cells.

3.1.1. Strong coupling regime: U4t and E g U; E g U=2;

EU=2; EU=2)

In Fig. 2(a)–(d), we represent the momentum distri-

bution for the strong coupling regime, where U . 10 eV

and E g 5; 7, 9 and 14 eV, respectively.

We have studied also, the effect of U and E on the

behavior of nðkÞ for fixed values of inverse temperature b ¼

0:04; 0.08, 0.2, respectively, shown in Fig. 3(a)–(c). The

magnitude of this observable is changing for different values

of short range interaction E. This result, reflect the

importance of including all range of Coulomb interaction

[20].

Fig. 1. (a) Schematic representation of the ground state geometry of trans-

polyacetylene. (b) Schematic representation of the unit cell of trans-

polyacetylene used in simulation.
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Fig. 2. (a) The variation of momentum distribution versus wave vector for

different values of b ðb ¼ 0:02; 0:08; 0:20Þ for (U . 10, E ¼ 5) (eV). (b)

The variation of momentum distribution versus wave vector for different

values of b ðb ¼ 0:02; 0:08; 0:20Þ for (U . 10, E ¼ 7) (eV). (c) The

variation of momentum distribution versus wave vector for different values

of b ðb ¼ 0:02; 0:08; 0:20Þ for (U . 10, E ¼ 9) (eV). (d) The variation of

momentum distribution versus wave vector for different values of b ðb ¼

0:02; 0:08; 0:20Þ for (U . 10, E ¼ 14) (eV).

Fig. 3. (a) The variation of momentum distribution versus wave vector for

(U ¼ 14, E ¼ 5, 7, 9, 14) (eV) and b ¼ 0:02: (b) The variation of

momentum distribution versus wave vector for (U ¼ 14, E ¼ 5, 7, 9, 14)

(eV) and b ¼ 0:04: (c) The variation of momentum distribution versus

wave vector for (U ¼ 14, E ¼ 5, 7, 9, 14) (eV) and b ¼ 0:2:
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Fig. 4. (a) The variation of momentum distribution versus wave vector for

different values of b ðb ¼ 0:02; 0:08; 0:20Þ for (U ¼ 10, E ¼ 5) (eV). (b)

The variation of momentum distribution versus wave vector for different

values of b ðb ¼ 0:02; 0:08; 0:20Þ for (U ¼ 10, E ¼ 8) (eV). (c) The

variation of momentum distribution versus wave vector for different values

of b ðb ¼ 0:02; 0:08; 0:20Þ for (U ¼ 10, E ¼ 10) (eV). (d) The variation of

momentum distribution versus wave vector for different values of b ðb ¼

0:02; 0:08; 0:20Þ for (U ¼ 10, E ¼ 13) (eV).

Fig. 5. (a) The variation of momentum distribution versus wave vector for

(U ¼ 10, E ¼ 5, 8, 10, 13) (eV) and b ¼ 0:02: (b) The variation of

momentum distribution versus wave vector for (U ¼ 10, E ¼ 5, 8, 10, 13)

(eV) and b ¼ 0:04: (c) The variation of momentum distribution versus

wave vector for (U ¼ 10, E ¼ 5, 8, 10, 13) (eV) and b ¼ 0:2:
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3.1.2. Intermediate coupling regime: U g 4t and E g U;

E g U=2; EU=2; EU=2)

Fig. 4(a)–(d) illustrates the size dependence of the

momentum distribution for U ¼ 10 eV and E g 5; 8, 10 and

13 eV, respectively. We notice that the behavior of nðkÞ is

typically the same for different values of b and ðU;EÞ: We

draw also in Fig. 5(a) – (c), the effect of b ðb ¼

0:04; 0:08; 0:2Þ: In the intermediate coupling, the momen-

tum distribution is less than the unity (as in the other

regimes), confirming the effect of band filling [21,22].

3.1.3. Weakly coupling regime: U4t and E g U; E g U=2;

EU=2; EU=2)

To confirm our finding, we treat the weak coupling

regime ðU , 4tÞ; given in Fig. 6(a)–(c), for E g 2; 3

and 6 eV, respectively, by investigating the effect of

temperature b. We notice that the magnitude of nðkÞ is

approaching the unity and start decaying when E

increases (see Fig. 7(a)–(c)) for ðb ¼ 0:04; 0:08; 0:2Þ;

respectively.

Fig. 6. (a) The variation of momentum distribution versus wave vector for

different values of b ðb ¼ 0:02; 0:08; 0:20Þ for (U ¼ 6, E ¼ 2) (eV). (b) The

variation of momentum distribution versus wave vector for different values

of b ðb ¼ 0:02; 0:08; 0:20Þ for (U ¼ 6, E ¼ 3) (eV). (c) The variation of

momentum distribution versus wave vector for different values of b ðb ¼

0:02; 0:08; 0:20Þ for (U ¼ 6, E ¼ 6) (eV). (d) The variation of momentum

distribution versus wave vector for (U ¼ 6, E ¼ 2, 3, 6 (eV) and b ¼ 0:02:

Fig. 7. (a) The variation of momentum distribution versus wave vector for

(U ¼ 6, E ¼ 2, 3, 6) (eV) and b ¼ 0:04: (b) The variation of momentum

distribution versus wave vector for (U ¼ 6, E ¼ 2, 3, 6) (eV) and b ¼ 0:2:

S. Goumri-Said et al. / Polymer 43 (2002) 6323–63316328



As a general observation, there is a temperature-

independent point at the free-electron value of the Fermi

wave vector, for k , kF or k . kF; nðkÞ is approximately

constant, but around kF; nðkÞ has a sudden change (an

inflection point) which indicates a Fermi liquid behavior.

We show this behavior, when we plot the results of Fig. 2(a)

in separate curves, in Fig. 8(a)–(c), for b ¼ 0:04; 0.08 and

0.2, respectively. These results agree fairly with Luttinger’s

theorem [23] and different results obtained from t=U

expansion [7,22]. Note that the Luttinger’s theorem does

not hold since there is no jump in the momentum

distribution (no Fermi surface). Nevertheless, k ¼ p=2

remains an inflection point. Hence, the existence of an

inflection point in the momentum distribution by itself

cannot be taken as a proof for the existence of quasi-

particles, but it is consistent with Sorella et al. [21,24–26]

results, namely at half-filled, the numerical simulation are

consistent with the absence of Fermi surface for relatively

small system size (32 £ 1 lattice in our case ). This is also,

due to the strong localization of electrons which occurs at

half-filling case [21].

Fig. 8. (a)–(c) The exhibition of the inflection point in the variation of

momentum distribution versus wave vector for b ¼ 0:04; 0.08, and 0.2,

respectively.

Fig. 9. Variation of the band-filling versus inverse temperature for: (a)

U ¼ 14, E ¼ 5, 7, 9, 14 (eV); (b) U ¼ 10, E ¼ 5, 8, 10, 13 (eV); and (c)

U ¼ 6, E ¼ 2, 3, 6 (eV).
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3.2. Band filling

It is interesting to study the band filling in k-space,

given by the following expression:

n ¼
1

2

X
s

ns ð13Þ

This observable confirms many results given by momen-

tum distribution. The behavior of n for different values

of inverse temperature and correlation parameters is

shown in Fig. 9(a)–(c), from these graphs we see that

the band filling is decreased as temperature is decreased

and it’s magnitude is always less than unity due to e–e

interactions [1,22,24,25].

In Fig. 10(a)–(c), we show the variation of the band

filling versus ðU;EÞ for ðb ¼ 0:04; 0:08; 0:2Þ; respectively.

The effect of localization is more significant, and the

behavior of band filling is the same qualitatively but the

magnitude of n is more influenced by correlation par-

ameters, as ðU;EÞ increase, the band filling is enhanced and

this is clear from Eq. (13).

4. Conclusion

The electronic momentum distribution function is

fundamental and gives more complementary information

to other characterization to our understanding of quantum

many-body systems in most area of physics. This obser-

vable, has been studied using different methods because

clear differences between the Fermi liquid and the non-

Fermi liquid (e.g. Luttinger liquid) behaviors can be found

from nðkÞ:

Using the determinantal QMC approach and the so-

called pseudo-fermionic field approximation, we calculate

the electronic momentum distribution function nðkÞ and

show the electron–electron interactions effect. We have

reported for different values of temperature and correlation

parameters ðU;EÞ the results of numerical simulation by

Monte Carlo on the extended one-dimensional Hubbard by

calculating nðkÞ for different range coupling. Our results are

in perfect agreement with the most current available results

in trans-polyacetylene and different works in quasi-one-

dimensional systems. Our calculation provides an alterna-

tive explanation to the Fermi liquid theory. Also, we have

found an absence of the Fermi surface consistent with

Luttinger’s theorem. The calculation of the band filling

observable for different correlation parameters ðU;EÞ has

confirmed the results given by the momentum distribution.
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